Exercise 16

In Exercises 13 to 19, use set theoretic or vector notation or both to describe the points that lie in the given configurations.

The line passing through $(0,2,1)$ in the direction of $2 \mathbf{i}-\mathbf{k}$

Solution

The equation for a line is

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector, b is the position vector for a point on the line, and t is a parameter. The vector $2 \mathbf{i}-\mathbf{k}$ can be written as $(2,0,-1)$, so the line in question can be written as

$$
\begin{aligned}
\mathbf{y}(t) & =(2,0,-1) t+(0,2,1) \\
& =(2 t, 0,-t)+(0,2,1) \\
& =(2 t, 2,-t+1)
\end{aligned}
$$

Since there's only one arbitrary constant t, the line is one-dimensional. The set of points on the line is described by

$$
\{(2 t, 2,-t+1), t \in \mathbb{R}\} .
$$

